Exercise 1

Use residues to establish the following integration formula:

$$
\int_{0}^{2 \pi} \frac{d \theta}{5+4 \sin \theta}=\frac{2 \pi}{3}
$$

Solution

Because the integral goes from 0 to 2π and the integrand is in terms of $\sin \theta$, we can make the substitution, $z=e^{i \theta}$. Euler's formula states that $e^{i \theta}=\cos \theta+i \sin \theta$, so we can write $\sin \theta$ and $d \theta$ in terms of z and $d z$, respectively.

$$
\sin \theta=\frac{z-z^{-1}}{2 i} \quad \text { and } \quad d \theta=\frac{d z}{i z} .
$$

The integral becomes

$$
\begin{aligned}
\int_{0}^{2 \pi} \frac{d \theta}{5+4 \sin \theta} & =\int_{C} \frac{1}{5+4\left(\frac{z-z^{-1}}{2 i}\right)} \frac{d z}{i z} \\
& =\int_{C} \frac{d z}{5 i z+2 z\left(z-z^{-1}\right)} \\
& =\int_{C} \frac{d z}{2 z^{2}+5 i z-2} \\
& =\int_{C} \frac{d z}{(z+2 i)(2 z+i)} \\
& =\int_{C} \frac{d z}{2(z+2 i)\left(z+\frac{i}{2}\right)} \\
& =\int_{C} f(z) d z
\end{aligned}
$$

where the contour C is the positively oriented unit circle centered at the origin.

Figure 1: This figure illustrates the unit circle in the complex plane, where $z=x+i y$.

According to Cauchy's residue theorem, this contour integral is $2 \pi i$ times the sum of the residues of $f(z)$ at the singular points inside the contour.

$$
\int_{C} f(z) d z=2 \pi i \sum_{k=1}^{n}{\underset{z=z_{k}}{\operatorname{Res}} f(z), ~(z)}
$$

$f(z)$ has two singular points, $z=-2 i$ and $z=-\frac{i}{2}$. Since $z=-2 i$ lies outside the unit circle, it makes no contribution to the integral. However, $z=-\frac{i}{2}$ does lie inside the circle, so we have to evaluate the residue of $f(z)$ at this point. Because $z=-\frac{i}{2}$ is a simple pole, the residue can be written as

$$
\operatorname{Res}_{z=-\frac{i}{2}} f(z)=\phi\left(-\frac{i}{2}\right)
$$

where $\phi(z)$ is determined from $f(z)$.

$$
f(z)=\frac{\phi(z)}{z+\frac{i}{2}} \quad \rightarrow \quad \phi(z)=\frac{1}{2(z+2 i)}
$$

So

$$
\operatorname{Res}_{z=-\frac{i}{2}} f(z)=\frac{1}{2\left(-\frac{i}{2}+2 i\right)}=\frac{1}{3 i} .
$$

This means that

$$
\int_{C} f(z) d z=2 \pi i\left(\frac{1}{3 i}\right)=\frac{2 \pi}{3} .
$$

And therefore,

$$
\int_{0}^{2 \pi} \frac{d \theta}{5+4 \sin \theta}=\frac{2 \pi}{3}
$$

